
DOCUMENT RESUME

ED 290 459 IR 013 115

AUTHOR Nachmias, Rafi; And Others
TITLE Variables--An Obstacle to Children Learning Computer

Programming. Technical Report No. 8.
INSTITUTION Tel-Aviv Univ. (Israel). Computers in Education

Research Lab.
PUB DATE Jul 86
NOTE 23p.; Paper presented at the Annual Meeting of the

American Educational Research Association (San
Francisco, CA, April 16-2C, 1986). For related
reports, see IR 013 108-114.

PUB TYPE Reports - Research/Technical (143)
Speeches /Conference Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Abstract reasoning; Age Differences; Comparative

Analysis, Computer Literacy; *Concept Formation;
Difficulty Level; Foreign Countries; Intermediate
Grades; *Microcomputers; *Preadolescents; Problems;
*Programing; Psychological Studies

IDENTIFIERS *Israel; *Variables

ABSTRACT
The difficulties that younger students experience in

understanding concepts related to the use of variables in computer
programming are examined through descriptions of two studies: (1)
detailed case studies of six highly intelligent children--three
fourth graders and three sixth graders--who learned to program in
BASIC -luring 60 hours of instruction under the careful observation of
research staff; and (2) a s',xly in a regular classroom environment
with 73 children in the fourth and sixth grades who had 12 two-hour
hands-on lessons in programming. The programming textbook used in
both studies taught the use of variables in the second half of the
course, thus permitting comparison of the acquisition of programming
concepts related to variables and the acquisition of concepts that do
not involve variables. The results of the first study indicated that
the fourth graders, in contrast to the sixth graders, were unable to
learn the concepts associated with variables, even though they had
understood the concepts without variables. The results of the second
study indicated that the inability to understand concepts associated
with variables was related more ,o the level of academic achievement
than to grade level. It is sugr.ested that four factors may explain
the difficulties younger students experience in learning to use
variables: (1) the ..el of abstraction in using variables; (2) the
dynamic nature of the values of variables; (3) the degree of
complexity in using variables; and (4) the level of reasoning
required. Measures that may help to overcome the influence of these
factors are suggested, and a 25-item bibliography is provided.
(EW)

Reproductions supplied y EDRS are the best that can be made

from ge original do(iment.

THE COMPUTERS IN EDUCATION RESEARCH LAB. [e] 113'n) trawrin miur. 1pth illauna

U S DEPARTMENT OF EDUCATION
Office of Educational ReaearCh and improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

ik This 'current nas been reproduced as
recen I from the person or organiTation
oroginwiing it

C7 Minor changes have been made to improve
reproduction quality

Points of view or opinions stated in this docu
ment do not necessarily represent official
OERI position or policy

VARIABLES AN OBSTACLE TO

CHILDREN LEARNING COMPUTER PROGRAMMING

Rafi Nachmias, David Mioduser, David Chen

Tecnical Report No. 8

July 1986

TEL AVIV UNIVERSII Y `,C1-100!.. OF EDUCATION

'PERMISSION TO REPRODUCE THIS
M ATERIAL 1AL .-3 BEEN GRANTED BY

David Chen

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

1311117 -Dal TV arm (7n no1o1391x

UNIT FOR COMMUNICATION & COMPU rER RE:St-ARCH IN EI IUCATION

9

113,n: awn-17-1`7 niiiiin

4THE COMPUTERS IN EDUCATION RESEARCH LAB. 1131 n3 D'31Unn '01W" 1pnli raMIMI

VARIABLES - AN OBSTACLE TO

CHILDREN LEARNING COMPUTER PROGRAMMING

Rafi Nachmias, David Mioduser, David Chen

Tecnical Report No. 8

July 1986

School of Education Tel Aviv Univercity Tel Aviv 69978 Israel

'Variables' - An Obstacle To Children Learning
Programming

Rafi Nachmias(1), David Mioduser, David Chen

School of Education, Tel-Aviv University, Israel.

(1) also the Lawrence Hall of Science, University of California, Berkeley.

This paper was presented at the Annual Meeting of the
I merican Educational Research Association April 19, 1986.

This paper was written while the first author was a Fulbright scholar at the University of
California at Berkeley. Support from the United State-Israel Education Foundation is
appreciated. The authors wish to thank John Nides and Elena Rienin for their help.
Requests for reprints should be sent to Rafi Nachmias, LH-22, Lawrence Hall of Science,
University of California, Berkeley, CA 94720.

1

INTRODUCTION

As microcomputers become increasingly popular in both homes and schools in Israel, a growing

number of students are engaged in introductory programming courses, in formal and informal
education systems. Many of these new programmers are young children in elementary school

who are learning to manipulate the programming environment as well as write, modify, and run

simple programs. When viewing an exemplary performance of some of these young students,

many people rush to the conclusion that young children can learn programming language very

easily. Such a conclusion is probably inaccurate; there is cumulative evidence from recent

research that learning programming language is neither as easy nor natural as it was thought to

be (Kurland, Mawby, Cahir, 1984; Da lbey, Linn1985). Many students encounter difficulties

in understanding and applying basic programming concepts (Bonar 1984: Soloway et al. 1982;

Perkins 1985; Sleeman 1984).

Computer programmings is a rather complex activity which requires a wide range of skills and
knowledge (Shiel, 1980). Difficulties encountered by novices may stem from the need to
simultaneously use a large number of basic skills. Some of these skills already exist in the

repertoire of the learner, while others must still be learned.

Some descriptive models have been proposed as tools for classifying and organizing these skills

into a conceptual framework. Shneiderman (1980) differentiates between syntactic knowledge

and semantic knowledge. He suggest that these two kinds of knowledge be organized in a spiral

form (Shneiderman, 1977). Mayer (1979) proposes a subdivision of the BASIC language into

8 levels which begins with a transaction level and concludes to a computer program level.

Nachmias, Mioduser, and Chen (1984) suggest that the skills and basic concepts required of the

beginning programmer can be divided into five domains of knowledge:

1) Handling the machine. This includes technical skills connected with the use of a

computer system and the understanding of the information flow that takes place between its

units when a computer program is executed;

2

2) Mastering the programming language. This includes learning the syntax cind the

semantics of the programming language.

3) Perceiving tile computer program structure. This includes the order of execution

of the statements (flow of control), different types of program structures and the capability

of algorithmic and procedural thinking;

4) Comprehending the logical dynamics of the computer program. In particular,

this includes the ability to follow how the values of the variables change when a program is

being executed, and the ability to manipulate and apply logical rules to variables;

5) Knowledge specific to the task. In order to write a program, specific knowledge is

needed about the problem which the program is being intended to solve.

It has been suggested that two types of learning are involved in the acquisition of programming

language. The first type concerns learning within, each of the above knowledge domains, and the

second concerns integration of these various domains.

This paper focuses oh the first type of learnir g of concepts within the fourth domain which are

related to variables. The ability to use variables is a key step in the development of

mathematical and scientific thinking in children; consequently learning to use variables is one of

the main concerns of mathematics and science education. Understanding the concept of variables

is also central to computer programming as a problem solving tool. Though it is possible to

write simple programs without variables, in order to realize the full potential, power, and

beauty of programming, the learner needs to use variables extensively in computer programs.

The findings of this paper are based upon two studies in which elementary school students

learned to use variables in a computer programming course. These studies part of a larger

study on the acquisition of several basic programming concepts by novice learners (Nachmias,

1985), were carried out in the Computers in Education Research Lab at Tel-Aviv University's

School of Education. The participants in the studies were fourth grade and sixth grade students

(ages 10-12). The first study was carried out under laboratory cond.tionc; the second was done

in a regular classrmrt environment.

The objectives of this paper are:

3

- To suggest that the understanding of concepts in the fourth domain of knowledge that relates to

variables, is one of the sources of difficulties in novices learning programming.

- To point out through a comparison of the achievements of fourth and sixth graders, that

children do not understand these concepts pertaining to variables before the sixth grade.

- To describe some difficulties young students encounter when they learn to use variables in

programming, and to suggest factors that can cause or increase these difficulties.

7

4

METH®.

DESCRIPTION OF THE STUDIES

Conclusions of this paper are based upon the findings of two studies:

The first study consisted of detailed case studies of six highly intelligent children (three fourth

graders and three sixth graders) who learned to program in BASIC during a period of four

months (about 60 hours of instruction). The students studied programming individually using

the learning materials developed, and interaction between them was encouraged. they were

guided by research staff who observed their work, provided help when necessary. and directed

the students to activities according to their level of understanding and ability. Detailed

observation of the students' learning processes and difficulties were recorded throughout the

course. A comprehensive final test was administered and final projects of students were

documented and saved. Because of the high aptitude of the students, the one -to -ore student to

teacher ratio, and the unlimited access to computers, the first study is considered to have been

conducted under ideal conditions.

The second study was conducted :n a rec,Jar clasisroom environment in two fourth grade classes

and two sixth grade classes in an upper middle class elementary school in Tel-Aviv. A

preliminary total of 11 students participated. A questionnaire was used initially to exclude any

students who had previous knowledge of programming. The final number of subjects

participating in the second study was 73. Forty-five students were in the fourth grade and 28

in the sixth grade; 31 were boys and 42 were girls. The instruction included 12 two hour

hands-on lessons, and there was an average of one computer per two students. The instructor

were the authors of this paper; the textbook used was the same as the one used in the first study.

During the course of the study, five tests were administered. At the conclusion of the course, a

final test in the form of an interview, using a computer was administered to each student.

Description of the data collection instruments used in the two studies, as well as the principles

in developing the learning material can be found elsewhere (Nachmias, 1985; Nachmias,

Mioduser, Chen, 1984; Nachmias, Mioduser, Chen, 1985).

S

5

THE INTRODUCTION OF VARIABLES IN THE COURSE

In the programming textbook used in the two studies (Nachmias, Miocluser, Chen, 1985a),

students are not required to master the concept of variables too early in the course. Instead, in

the first eight chapters of the textbook, concepts and activities that do not require a direct use of

variables are introduced, such as graphics command, random variables, infinite loops.

numerical calculation, and printing statements.

The concept of a random number as a number "chosen" by the computer was introduced quite

early in the course to allow t'l teaching of loop constructs as well as to enable students to cope

with more complex programs such as simple animation and probability games.

Teaching numerical calculation and print statements at the conclusion of the first part of the

course enabled the students to integrate the ,oncepts and skills from the first three domains of

knowledge they had previously learned. It was intended that a solid foundation for the

introduction of variables to young students be provided in the first part of the course.

In the second part of the course, students learned to use variables. The children were taught that

a variable is a designated location in the computer memory which contains a value that can be

manipulated while the program runs.

The following uses of variables in computer programs were gradually introduced to the students:

1) Variables as parameters in action commands (e.g. PLOT X,Y to draw a point at a

certain position on the screen). Students initially used variables just to store constant

numbers. Later students learned to manipulate values assigned to variables.

2) Using variables to store the values of mathematical expression (e.g.

DISTANCE=VELOCITY*TIME). Students in the fourt grade in Israel are not familiar with the

English language; consequently, very short variable names (e.g. X.Y. A$) were used. The

mathematical expressions used in the course were kept simple, because of the young age of

9

6

the students. For example, students were introduced to a program that calculates the number

of days, hours, minutes, and seconds in a given number of years.

3) Using a variable as a counter (e.g. N=N+1). A counter was added to a simple program,

such as ones that simulate a coin tossing and that display drills on the screen.

4) Using .a variable as an operator in a logical expression. in conditional statements

(e.g. IF X)0, THEN...) Conditionals were only used in computer programs to execute a

command only if a certain condition was met, or to stop infinite loops, or to branch programs.

Examples of these uses of variables were presented to students in short programs which they

were encouraged to understand, run, test, and modify. The students were then asked to write

programs carrying out similar tasks.

The way variable values are manipulated is of great importance in programming. Four methods

for changing the value of a variable were presented to the students during the course:

a) Assigning a constant value to a variable using the assignment statement (e.g. X=30,

A$="Shalom").

b) Assigning a random number to a variable (e.g. X=RND(1)*100).

c) Changing the value of a variable while the program runs by using the input statements (e.g.

INPUT S, GET A$).

d) Incrementing the value of a variable. Changes could be either simple (e.g. X=X+1), complex

(e.g. X=3*X+4), or consist of more than one variable (e.g. A =2*B +C).

The data types used in the course were integers, real numbers, and alphanumeric strings. More

complex data structures such as array were beyond the scope of this course.

1 0

7

RESULTS AND INTERPRETATIQN

COMPREHENSION OF VARIABLE RELATED CONCEPTS

By dividing the teaching of programming intc two parts, with and without the use of variables, it

was possible to compare the acquisition of programming concepts related to variables to concepts

which did hot depend upon the use of variables.

Study 1

In study 1, the children in the fourth grade achieved a good understanding of programming

without variables. They wrote and ran simple programs that demonstrated their creativity and
their ability to apply the concepts they had learned. When the students tried to learn concepts

associated with variables however, their level of understanding almost ceased to exist. It was as
if the students had reached an insurmountable barrier. In contrast, the sixth grade students

usually succeeded in overcoming this barrier.

In the first part of the course, sixth graders worked on more difficult problems than the tourth
graders did. They also acquired new material at a faster rate than the fourth graders. In the

second part of the course, the sixth graders continued to modify programs and to solve problems
by writing their own programs, albeit with more difficulty. In contrast the fourth graders,
rather than writing their own programs, rr , examples that had been prepared for them, without

achieving a thorough understanding of the concepts involved. In a sense they turned from being

programmers `o program users.

The previous pattern was also reflected in student scores on the final test, which consisted of
five parts. Each part required the students to concentrate on a different programming concept.

Students were asked to identify syntax errors, describe the function of statements, predict me

output of a program, modify slightly a given program, and to write a short program using the

concept underlying that part of the test.

I 1

Table 1 presents the mean scores of both age groups for each of the five parts of the test.

TABLE 1: FINAL TEST SCORES OF STUDY 1

PROGRAMMING MEAN SCORES*
CONCEPTS AND SKILLS

basic graphics

random numbers & infinite loops

random numbe-s & printing

variables

input & conditionals

8

FOURTH GRADERS SIX GRADERS

69 90

71 84

34 86

21 68

0 65

* The maximal score for each part is 100.

The following trends are observable from these resLs:

It is apparent that the fourth graders were fairly successful in mastering the first two

concepts, which involved programming without using variables. They had more difficulty in

printing random numbers, and they failed completely to use variables a. required in the final
two parts of the test.

- The scores of the sixth graders in the first three parts of these were excellent. In the final

two parts there was a moderate decrease in their understanding.

- Sixth graders scored better than fourth graders for each part of the test, but the most
significant difference in results was in their comprehension of variables.

Each student was required to do a final project during approximately ten hours of on-line

i2

9

programming. Each student worked r'n a Pacman-like program that required users to move a

square thro.- ^. maze with the use of the keyboard without hitting the maze walls. "Eating"

other cot Auares resulted in the user being given credit points. Sixth graders used

variables much more e%tensiveili in their programs that the fourth graders. Al of the sixth

grade students used variables as counters to keep track of credit points; none of the fourth

graders did so.

One of the fourth graders found an original way to keep track of credits. His program printed a

star every time the user earned a credit. At the end cf the game, the user could count the number

of stars. Apparently this student was not able to write a program that used a variable as a

counter.

All of the fourth graders used .ne maximum amount of the time allotted for work on their

projects. The sixth graders, however, were able to finish their projects in about half of the

allotted time. They then worked on a second project which consisted of graphics animation

similar to that used in video games such as Space Invaders. In these second projects variables

were employed more extensively and in more complex ways.

It was clear from the final projects, that the older students had achieved competency in using and

applying variables. but younger students lacked the it maturity to comprehend the

concept of the variable.

Shic ly 2

An evaluation of the scores of the final test given to students in the second study shows a marked

decr ase in comprehension of concepts pertaining to variables. This test was considered highly

reliable hecause it consisted of individual interviews with students along with actual use of the

computer.

Table 2 presents a summary of the mean scores for each part of the final test (toe maximal

score for each part was 100). Scores of students were grouped into three categories according

to their level of academic achievement in school.

10

TABLE 2: FINAL TEST SCORES OF STUDY 2 (N= 64)

(The mean scores are presented in percents)

concepts:
graphics
statements
(4 items)

random
number
(2 Items)

loops

(3 Items)

variables

(4 Items)

overall
score
(15 Items)

academic
level: 1 2 3 all 1 2 3 all 1 ! 3 all 1 2 3 all 4, 2 3 all

4th grade 69 77 83 77 21 44 65 47 50 56 72 51 20 33 59 41 43 54 72 59

6th grade

all students

86 84 98 89

81

31 50 75 53

49

64 68 79 70

64

20 28 69 39

40

54 59 82 65

61

level of academic achievements : 1-low 2-intermediate 3-high

Table 2 shows that most students understood the concept of infinite loops, and almost all students

succeeded in running graphics programs. The level of students' understanding of the concepts of

random numbers and variables, however, was low. Students with low and intermediate academic

achievement scored extremely low in the part that tested the understanding of variables.

The difference in levels of students' academic achievement, appears to explain in this study the

wide variation between students better than the difference in ages.

STUDENTS' DIFFi.. ._TIES IN USING- VARIABLES

An analysis of difficulties encountered by students while using variables suggests four factors

which can cause or increase the difficulty students experience in learning to use variables:

1. Level of abstraction

The more abstract a concept, the more difficulty young students have in grasping it. Using

variables as representatives of a general phenomena increases the level of abstraction. Young

i4

11

students can understand the use of constant numbers as parameters in a computer command for

example, far easier than they can comprehend the more general representation of the same

command with variables as parameters. Thus, a child who can understand a concrete location on

the screen, identified by two numbers (e.g. 2,3), may not be able to understand the meaning of a

point at X,Y, which represents a set of points rather than a single point.

Even the sixth grade students were not able to cross the intellectual bridge between the concrete

and abstract representation and to internalize the abstract meaning of variables:

Example: Children in the sixth grade who could iihr-ly draw lines were asked to draw a 50 units

long vertical line which started in the location (X,Y). None of the students succeeded in this

task. Even after having the solution explained to them, the students could not draw such a line

when the required length was abst acted to 'Z' units.

2. The dynamic nature of variables

As mentioned previously, there are four methods for assigning a value to a variable:

-Assigning a constant number to a variable;

-Assigning a random number to a variable;

-Changing the value of a variable while the program is being executed, using input devices;

-Incrementing the value of a variable.

There is a crucial difference in terms of the ability of students to understand how value is

assigned to a variable using the first three methods, and using the fourth method. The first thre'

assign a value that is independent of the former value, whereas the fourth method required that

the new value be calculated from the former value (e.g. X=X+2). In order to follow this change,

students must hold in their short term memory a series of numbers. They have to figure out the

first number in the series as well as device the mathematical rule for determining the rest of

the following numbers in this series. This ability is not required to master the first three

methods for assigning values to variables.

In table 3, four very short programs are shown that illustrate the four methods for changing the

value of variable and the resulting load of short term memory (STM) incurred in each case.

I 5

12

TABLE 3: FOUR METHODS FOR CHANGING THE VALUE OF A VARIABLE

METHOD.
REQUIREMENT OF

EXAMPLE STUDENT STM LOAD

use of
a constant number

use of

a random variable

enter a new value
while the program runs

incrementing the
value of a variable

10 X=20

20 PRINT X
30 GOTO 10

10X. RND(1)*40
20 PRINT X
30 GOTO 10

10 INPUT X
20 PRINT X
30 GOTO 10

10 X=X+2

20 PRINT X
30 GOTO 10

20

any number the computer
chooses

any number the user
chooses

{2,4,6,8,10 ... }

the first number
the mathematical rule

The example shown above which uses the fourth method illustrates one of the simplest formulas

for incrementing the value of a variable. When the formula for calculating the next number in

the series is slightly mole complex such as X=2*X+1, the resulting series of numbers is
{1,3,7,15,31 ... } which is difficult for young students to remember and understand.

The following example illustrates the difficulty of young learner in using the fourth method.

Example: A fourth grader in study 1 was instructed to run a program that printed the following

series of sequential numbers: { 0,1,2,3,4,5 }. He was then asked to modify the program so it

would only print the even numbers { 0,2,4,6,8 ...}. The students proceeded to change the

program so it read as follows:

ORIGINAL PROGRAM MODIFIED PROGRAM

10 PRINT X

20 X=X+1

30 GOTO 10

10 PRINT X,X=2

20 X=X+1

30 GOTO 10

13

Apparently, the student totally failed to comprehend the principles underlying the method for

incrementing of the value of a variable.

3. Degree of complexity

Variables can be implemented in a computer program in varying degrees of complexity, defined

in part by the following factors (all the examples were taken from Applesoft Basic):

- The number of parameters in the statement, either one (e.g. COLOR=3), or more (e.g. HPLOT

0,0 TO 100,100).

- The number of variables actually used as parameters in a statement. (e.g. HLIN 0,40 AT X vs.

HLIN X,X AT X).

- The way variable appear in the command, either directly (e.g. HPLOT X,X), or as a result of a

calculation (e.g. HPLOT 180-X,X).

It was apparent from the two studies that each additional parameter and calculation added to the

degree of complexity and greatly increased the demand on students' short term memory load as

they coped with new material, making learning more difficult. This is illustrated by the

following:

Example: In the second study, the mean percentage of correct answers to questions pertaining to

plot commands with via. parameters was 75. In the same test, the mean percentage of correct

answers to questions pertaining to line commands with three parameters was only 46.

Example: In programs containing many parameters, student performance was very low. In the

first study, a simple program that drew rectangles was presented to the students. The program

i 7

14

required the user to input four numbers: two numbers defined the location of the upper left

corner of the rectangle, one which defined the length, and one which defined the width. After the

user entered the numbers, the program drew a rectangle with these specifications. The students

ran the program with data specified in the textbook. Next, they were asked to use the program to

draw ma very long rectangle" anywhere on the screen. Surprisingly, none of the students,

including the sixth graders, succeeded in performing this task.

4. Level of logical reasoning ri..oilred

Variables contained in logical expressions are used in programming to do selective acts.

Undoubtedly, the ability to reason logically is a prerequisite for being able to use conditionals in

programming. Some students who participated in the two studies lacked this ability.

Example: Some students who understood the meaning of the express X<1 could not understand the

meaning of the express X<Y.

Example: A sixth grader was required to write a program that asked the user to enter two

numbers. If the numbers are equal, the program should print a certain message; if they are

unequal the program was supposed to print a different message. The student's program read as

follows:

10 INPUT A

20 IF A=A THEN...

30 IF AAA THEN...

Evidently this sixth grader lacked understanding in applying logical rules.

Example: Fourth graders ran a six line program which generated a random number without

displaying it. The program then asked the user to guess the number. After a student inputted his

guess the program responded by displaying "too big", "too small" or "you found it". Fourth

graders commonly replied to the display "too big" by inputting a still larger number. They failed

to comprehend the logical rule underlying the game.

15

DISCUSSION

It has been argued that the lack of the ability to comprehend the concepts relating to variables
acts as a barrier to young students learning programming. The students in the first study were
highly intelligent and motivated, and learning conditions were close to ideal. Nevertheless,
participating fourth grade students totally failed to understand the concepts pertaining to

variables and sixth grade students experienced many difficulties in learning them. Thus, it may
be concluded that other students of this age will also find understanding tne concept of variables
difficult to understand.

These conclusions support Carlson's claim that, "Even very bright children under the age of 12
may be slow in mastering the more abstract parts of programming" (Carlson, 1983). These
conclusions are also in agreement with the results of a study done at the Bank Street College of

Education, that showed students seldom use variables in writing LOGO programs (Mawby,
1984).

Four possible factors affecting the level of difficulty experienced by students learning to use

variables were suggested above: the level of abstraction in using variables, the dynamic nature

of the values of variables, the degree of complexity in using variables, and the logical reasoning

required. Recognizing the influence of these factors on learning, it might be possible to overcome

some of the difficulties encountered by students, through enacting the following measures:

Postpone the introduction of variables to a later stage in the learning process as suggested by

Luehrmann (1983) and by Nachmias, Mioduser and Chen (1984). It has been suggested that

young students first master the skills from three of the domains of knowledge presented in the

Nachmias, et al. model --machine handling skills, the language features and flow of control of
the computer program -- before introducing the concept of variables. It is essential to

present programming concepts to young children gradually and build upon the knowledge they
have mastered previously.

- Displaying the changes in the value of variables on the screen during the execution of a

program can help students to getter understand the dynamic nature of variables. In current

i 9

16

window-oriented programming environments like MacPascal (Apple Computer Inc.), Instant

Pascal (Think Technologies, Inc.), and Boxer (diSessa, 1984), this display is a buiit-in

feature. Attaching a window to a program variable is analogous to attaching a voltmeter to an

electronic circuit (Bobrow, Stefik, 1986). It gives on-line feedback to the programmer and it

may reduce the demand of the short term memory load of young learners while they are

programming. More research is needed to determine the extent of students' benefit from the

on-line feedback features of the programming environment.

Integrating concrete models into the learning environment, as suggested by Mayer (1981);

duBoulay, O'Shea and Monk (1981); and Mioduser, Nachmias and Chen (1984), may

contribute to the construction or completion of students' mental models of computer programs,

and thereby decrease the level of abstraction which is raised by the introduction of variables.

Further research and development on interactive computer software which attempt to

construct such mental models may prove to be of great value.

- Developing the students' repertoire of templates employed to perform commonly encountered

tasks in programs, as argued by Linn (1985), may reduce the complexity of dealing with

more than one variable in a program.

- Teaching logical reasoning prior to introducing conditionals may reduce the number of

students' misconceptions and errors in programming instruction.

This paper has examined programming language acquisition from a developmental point of view.

The studies presented dealt with only two points on the developmental curve: fourth grade and

sixth grade. Fourth grade was considered representative of a concrete operational stage, and the

sixth grade as representative of the possible beginning of the formal operation stage. It may be

concluded from this research that the understanding of concepts related to variables does not

occur before the sixth grade (age of 12). There is a need for further developmental research on

the use of variables in higher ages to determine whether difficulties posed by learning the

concepts relating to variables act as barriers to older novice students as well.

Many research studies have dealt with far transfer from programming toward fostering high

20

17

level cognitive skills (Salomon, Perkins, 1984; Pea, Kurland, 1984; . Pea, 1984). It is

believed that there is a place for more research to investigate closer transfer; c.,,:h as how

learning and using variables influence students' ability in similar concepts a ,uisition in

mathematics and science.

21

18

REFERENCES

Bonar, J., "Understanding The Bugs of Novice Programmers", Learning Research and
Development Center, University of Pittsburgh, October 1984.

Bobrow D. G., & Stefik M. J., "Perspective on Artificial Intelligence Programming", Science,
Vol. 231, February 1986, 951-957.

Carlson E.H., "Teach Your Kids Programming ", Creative Computing, April 1983, . 168.176.

Dalbey, J., & Linn, M. C., "The demands and requirements of computer programming: A review
of the literature ", Journal of educational Computing Research, Vol. 1, 1985.

diSessa, A., "Boxer: An Integrated Personal Computing Environment", Educational Computing
Group, Laboratory of Computer Science, M. I. T. , Cambridge, 1984.

duBoulay, J. B. H.; O'Shea, T.; Monk, J., *Thc Black Box Inside the Glass Box: Presenting
Computing Concepts to Novices", Int. J. Man-Machine Studies 14, 1981, 237-249.

Kurland, M. D.; Mawby, R.; Cahir, N., "The Development of Programming Expertise in Adults
and Children", in: Kurland, M. D.(ed.), Developmental Studies of Computer Programming
Skills, Bank Street College of Education, Technical Reoport NO. 29, AERA Annual Meeting, 1984.

Linn, Marcia C., "The Cognitive Consequences of Programming Instruction in Classrooms",
Educational Researcher, May 1985, 14-29.

Luhermann, A., "Slicing Through the Spaghetti Code", The Computer Teacher, April 1983.

Mawby R., " determining Students' Understanding of Programming Concepts", Paper presented
in AERA meeting, April 1984.

Mayer, R.E., "A Psychology of Learning BASIC", Communication of the ACM 22, November 1979,
5 89-59 3.

Mayer, R. E., "A Psychology of How Novices Learn Computer Programming", Computing
Surveys, Vol. 13, No. 4, 1981, 121-141.

Mioduser, D.; Nachmias, R.; Chen, D., " Teaching Programming Literacy To Non-Programmers:
The Use of Computerized Simulation.", The Computer in education Research Lab., research
report No. 15, Tel-Aviv university, Israel, 1985.

Nachmias, R., "Teaching Programming Language to Children', unpublished Ph.D. Thesis,
Tel-Aviv University, 1985.

22

i9

Nachmias, R.; Mioduser, D.; Chen, D., "Acquisition of Basic Computer Programming Concepts By
Children", The Computers in Education Research Lab., Research Report No. 14, Tel-Aviv
University, Israel, 1985.

Nachmias, R.; Mioduser, D.; Chen D., Programming is a Child's Game (Hebrew), Masada, Israel,
1985a.

Nachmias, R.; Mioduser, D.; Chen, D., "A Cognitive Curricular model for Teaching Computer
Programming to Children", The Computer in Education Research Lab., research report No.3,
Tel-Aviv University, Israel, 1984.

Pea, R. D.; Kurland M. D., "On The Cognitive Effects of Learning Computer Programming", New
Ideas Psychol., Vol. 2, No. 2, 1984, 137-168.

Perkins, D. N.; Martin F., " Fragile Knowledge and Neglected Strategies in Novice
Programmers", Harvard Graduate School of Education, 1985.

Salomon, G.,; Perkins, D. N., "Rocky Roads to Transfer: Rethinking Mechanisms of a Neglected
Phenomenon", Paper Presented at the Conference on Thinking, Harvard Graduate School of
Education, 1984.

Sheil, B. A., "Coping with complexity", Proceedings of Houston Symposium III, Information and
Society, 1980.

Shneiderman, B., "Teaching Programming: A Spiral Approach to Syntax and Semantics",
Computers and Education 1, 1977, 193-197.

Shneiderman, B., Software Psychology: Human Factors in Computer and Information Systems,
Winthrop, Cambridge, MA., 1980.

Sleeman D.; Putnam, R. T.; Baxter, J. A.; Kuspa, L. K., "Pascal and High School Students: A Study
of Misconceptions", Occasional Report, No. 9, Technology Panel Study of Stanford end the
Schools, Stanford, 1984.

Soloway, E.; Ehrlich, K.; Bonar, J.; Greenspan, J., "What Do Novices Know About
Programming?" in: Shneiderman, B.; Badre, A.(eds.), Directions in Human-Computer
Interactions, Hillsdale, NJ., Ablex, 1982.

2 3

